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Abstract-The applicability of the homogeneous medium approximation to transverse transient heat 
conduction in unidirectional fiber-reinforced composites is examined. The study focuses on the problem 
of transient heat conduction in thin cross-sections, encountered in applications such as the manufacture 
of commercial prepreg tapes, the filament winding process, etc. The Aash experiment for measuring the 
apparent transient diffusivity was numerically simulated for a wide range of composite parameters. Based 
on the parametric studies, a critical sample thickness is proposed, above which the composite may be 
analyzed in a simplified manner as a homogeneous medium having an equivalent transient thermal 
diffisivity. Below the critical thickness, the homogeneous medium approximation may introduce non- 
negligible errors. An analytical means for the evaluation of the homogenized transient diffusivity in practical 

situations is also presented. 

INTRODUCTION 

THE STEADY state thermal conductivity and the tran- 

sient thermal diffusivity are important parameters 
involved in the manufacture of composite materials, 
and in their design for various high temperature appli- 
cations. During the analysis of composite materials, 
it is desirable to approximate the heterogeneous 
material as a homogeneous medium having ‘effective’ 
properties, since this allows for substantial sim- 

plification of the process simulations. This approxi- 
mation, referred to as homogenization of the com- 
posite material, is well established and widely accepted 
in the case of steady state heat conduction in com- 
posite media. The literature abounds with studies on 
the steady state heat conduction in composite 
materials, aimed at obtaining the ‘effective’ thermal 
conductivity, k,, as a function of the composite prop- 
erties [l-3]. 

On the other hand, the thermal diffusivity (a), 
strictly speaking, is not a characteristic property of 
composite materials. This is due to the fact that the 
unsteady heat conduction equation in which s( appears 

as a physical constant is valid only for homogeneous 
media. Nevertheless, in practice, diffusivity techniques 
have been successfully applied to many composite 
materials. For example, Truong and Zinsmeister [4] 
studied thermal wave propagation in a layered com- 
posite material, with the waves running parallel to the 
layers, and proposed that such materials can be best 
characterized by two ‘diffusivities’, one representing 
the wave attenuation and the other describing the 
phase shift. 

Among all the existing experimental methods of 
determining the diffusivity of composite materials, the 

notably simple and popular one is the flash method of 
Parker et al. [5], originally proposed for homogeneous 
materials. The method has been extended to the 
measurement of ‘effective’ thermal diffusivities of 
laminates [6], particulate composites [7, 81, and fiber- 
reinforced composites [9-l 11. In the flash method, a 
high intensity, short duration energy pulse is imposed 
uniformly on the front face of a test composite speci- 
men. Under adiabatic conditions, except for the initial 
pulse, the average rear face temperature rise is moni- 
tored and recorded as a function of time. The ‘effec- 
tive’ thermal diffusivity, LX,, can be obtained from the 
‘half-time’, t I)*, which is the time required for the rear 
face to achieve one-half its maximum temperature 
rise, using the relation [5] 

1.38L2 
a, 2 1 

7.l t1:2 

where L is the specimen thickness. 
Among the theoretical means of estimating the 

transient diffusivity of composites (such as using the 
concept of thermal effusivities [9]), the simplest one is 
the ‘static’ diffusivity approximation. This approxi- 
mation treats the composite material as a homo- 
geneous medium whose ‘static’ thermal diffusivity, CX,, 
is defined based on the effective thermal conductivity 

k, (from a steady state heat conduction analysis [l- 
3]), and the effective volumetric specific heat (PC), 
(which is a volume average of the volumetric specific 
heats of the constituent phases) as 

k 
“=o,. 

In the case of fiber-reinforced composites, the effective 
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NOMENCLATURE 

D fiber diameter [m] ‘static’ thermal diffusivity [m’ s- ‘1 
k thermal conductivity [W m ’ KP ‘1 ; ratio of fiber conductivity to matrix 
L dimensionless thermal conductivity, conductivity 

equation (8) i’ fiber packing angle (Fig. 2) 

1°C unit cell height (Fig. 2) [m] [degrees] 
L thickness of the composite sample [m] ul ratio of fiber-matrix volumetric specific 

n index for summation heat 

e energy pulse per unit area [J m 2] 0 dimensionless temperature, equation (8) 
t time [s] (PC) volumetric specific heat [J mm ’ K ‘1 
T temperature [K] PC dimensionless volumetric specific heat, 

7;1 initial temperature of the composite equation (8) 

sample [K] 
11, 

dimensionless time, equation (8) 

2-M maximum steady state temperature dimensionless time step. 

attained by the composite sample [K] 
1’ fiber volume fraction 
CV,, unit cell width (Fig. 2) [m] Superscripts and subscripts 
w width of the composite sample [m] dimensionless length variable scaled with 

X _Y coordinate axes respect to the sample thickness. L 

AX grid size in the .x-direction [m] l/2 ‘half-time’ from the Aash experiment 

AY grid size in the ),-direction, hash region e effective value 

depth [ml. f fiber 
F hash region 

Greek symbols m matrix 

a thermal diffusivity [m’ s- ‘1 rear rear face. 

volulnetric specific heat, (PC),, is defined in terms of 
the fiber and the matrix volumetric specific heats, (PC), 
and (PC),, respectively, and the fiber volume fraction, 
~1, as 

(PC), = z~(pc),-+(l -a)(pc),. (3) 

It should be noted that the ‘effective’ and ‘static’ 
diffusivities are both fictitious diffusivities, and are 
only approximate characterizations of the transient 
thermal behavior. If an exact transient tem~rature 
distribution in the composite is desired, one has to 
resort to a full numerical solution. The ‘effective’ 
diffusivity is based on the ‘half-time’ of the tem- 
perature rise history, and does not characterize the 
total transient process. On the other hand, the homo- 
genizcd ‘static’ diffusivity depends purely on the 
steady state properties. In comparison. and as will be 
shown in a later section, the *effective’ diffusivity is a 
more realistic characterization ; however, the ‘static’ 

diffusivity is easier to evaluate, using the results of the 
steady state analysis [l-3]. Therefore, it is of great 
practical value to determine the conditions under 
which the ‘static’ diffusivity may be used. 

Transverse thermal conduction in fibrous com- 
posites bears important relevance to the analysis of 
composite forming processes such as pultrusion [I 21, 
autoclave curing [13] and filament winding [14]. In 
practical applications, fiber-reinforced composite 
thicknesses typically vary from about 100 birn to over 
1 in. [15], and the fiber diameters are normally in the 
range IO pm to about 50 pm [16]. For very thin 

samples, the scale of heterogeneity (which in the case 
of fibrous composites may be regarded as the fiber 

diameter) is of the order of the sample thickness. 
Consequently, the homogeneity approximation is 
likely to be inaccurate (for different properties of the 
constituent phases), and the two diffusivities differ 
widely. As the thickness increases, the specimen 
approaches homogeneity and the ‘effective’ diffusivity 
approaches the ‘static’ diffusivity. A comparison 
between the homogenized ‘static’ diffusivity (equation 
(2)) and the experimentally measured ‘effective’ ther- 
mal diffusivity (equation (I)) yields a criterion for the 
applicability of homogenization. 

The most relevant investigations in the literature 
concerning transient heat conduction in fiber- 
reinforced composites arc those of Taylor and co- 
workers [IO, I I]. Taylor and Kelsic [IO] studied 
coarse-weave ~ber-reinforced composites with fiber 
volume fractions less than 30%. Their primary 
concern, however. was heat flow along fibers at least 
partially aligned in the direction of heat flow. They 
used the flash technique [5] to assess the influence of 
the fiber-to-matrix conductivity, /Y, the fiber volume 
fraction, U, and the fiber orientation with respect to 
the direction of heat flow on the ‘effective’ thermal 
diffusivity. Based on their results, they concluded that 
the conductivity ratio. ,& is the most important par- 
ameter affecting the transient, thermal behavior of 
fibrous composites, with the fibers at least partially 
oriented along the heat flow direction. 

Taylor et ul. [I I] examined the applicability of the 
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Aash technique [5] for measuring thermal diffusivity 
of fine-weave fiber-reinforced 3-D carbon/carbon 

composites. It was qualitatively concluded that the 
material may be treated as homogeneous for the 
purposes of transient heat conduction if the sample 
thickness is much greater than the ‘heterogeneity 
dimension’. 

The present work addresses the limitations of using 
the homogenized ‘static’ transverse diffusivity in prac- 
tical situations, where the fiber volume fraction ranges 
from near 30% to about 70%, and the fibers are 
relatively randomly distributed in the matrix. While 
the use of the ‘static’ diffusivity in thick cross-sections 
is obvious, the applicability of homogenization to thin 
specimen needs to be justified. With this objective, the 
focus of the paper is on transient heat conduction in 
thin samples. 

Transient heat conduction in thin cross-sections, 
transverse to the fibers, is frequently encountered in 

the manufacture of commercial prepregs, and in the 
analysis of filament winding processes [14], where the 
thicknesses are about 100.-300 pm and the fiber diam- 
cters about 15-30 pm. It is the intent of the present 
study to devise a quantitatiw criterion which will 
enable the use of the homogenized ‘static’ diffusivity 
with confidence in the practical range of composite 
parameters. To the authors’ knowledge, such a cri- 
terion for transient transverse condu~tjon in fiber- 
reinforced composites does not exist in the literature. 
The numcricai simulation of the flash experiment [5] 
for a wide range of composite parameters is described. 
The ‘effective’ diffusivity obtained from the simulation 
is vcrificd to be a realistic measure of the transient 
thermal behavior of fibrous composites, and has been 
used as the reference for comparison with the homo- 
genized ‘static’ diffus~vity. An effective analytical 
method for estimating the homogenized ‘static’ diffu- 
sivity of practical composites. having ordered or dis- 
ordered fiber arrangements, is also presented. 

ANALYSIS 

Before presenting the simulation details of the flash 
experiment, the initial and final conditions on the 

temperature of the test specimen are identified. 
Figure 1 shows a schematic of the flash experiment 

[5] and the cross-section of a general unidirectional 
fiber-reinforced composite sample. In the flash exper- 
iment, the front face of a thermally insulated com- 
posite sample of thickness L and initial temperature 
7’0, is uniformly irradiated with a short duration 
energy pulse of magnitude Q per unit front surface 
area. At time zero, the energy pulse heats up a small 
flash depth Ai from the front face, to a Bash tem- 
perature r,, as per the relation 

(PC),A.V(T,. - T,) = Q (4) 

where (PC), is the ‘effective’ volumetric specific heat 
of the sample, defined in equation (3). 

Since the sample is thermally insulated, the steady 

state maximum temperature TM, attained by the entire 
sample of thickness L, is given by 

(PCM~i.8 - T0) = Q. (5) 

The ‘half-time’, ti/Zr for the sample is the time when 
the rear face temperature rise equals (TM - T,)/2, and 
the ‘effective’ thermal diffusivity is then evaluated by 
equation (1). 

The process under consideration is the one-dimen- 

sional transient conduction along the negative j?-direc- 
tion in Fig. I. In the numerical simulation, one needs 
to analyze a representative finite width, IV, as shown 
schematically by the dashed lines in Fig. 1, so as to 
account for the influence of the fibers on the heat flow. 
Thus the simulation consists of solving the transient 
heat conduction equation in a two-dirnensi~~~l com- 
posite domain. Of ~rti~ular interest is the rear face 
temperature rise as a function of time, which yields the 
‘half-time’ for the evaluation of the ‘effective’ thermal 
diffusivity ~1,. The appropriate choice of the width, 
W (Fig. I), will be addressed in a later section. The 
generalized mathematical model for the simulation is 
developed hcrc. 

In a dimensionless form, the two-dimensional 

unsteady heat conduction equation in the sample, 
with the associated adiabatic boundary conditions, is 

where the following non-dimensional groups have 
been used : 

In equation (8), the temperature rise, 8, is normalized 
with respect to the steady state maximum temperature 
rise (TM - T,]), so that the dimensionless rear face 
temperature rise is between 0 and 1. Also, T represents 
the diInensionless time variable. the dimel~sion~ess 
‘half-time’, z,:~, corresponds to the average rear face 
8 of l/2, and all length variables are scaled with respect 
to the sample thickness L (denoted by overbars). The 
thermal conductivity, k, and the volumetric specific 
heat, (PC), are normalized in terms of the respective 
matrix properties (subscript m). The subscript f in 
equation (8) denotes the properties of the fiber. 
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l Energy pulse per unit area, Q. at t = 0 

r 

l Insulated at all other times (t > 0) 

FE. I. Schematic of the flash experiment. A short duration energy pulse imposed on the front face initially 
at time = 0. Adiabatic conditions ~~aintained for time > 0. For the numerical simLllation, a finite width 

(shown by dashed lines) of the sample is considered. 

The initial condition is the uniform dimensionless 
temperature, 8. = 0 throughout the sample except for 
the flashed region of depth Aj, which is at the dimen- 
sionless flash temperature, 0,. From equations (4). 
(5) and (81, it follows that 0, equals l/AJ. The initial 
condition may then be expressed as 

0~0 for o<~<(I--A~); 

0~0, for (I-AF)<I:< 1. (9) 

Parame fers 
A fibrous composite medium, as far as transient 

thermal conduction is concerned, is described in terms 
of the fiber--matrix thermal conductivity and volu- 

metric specific heat ratios fl and q respectively, the 
fiber volume fraction r, and the geometric arrange- 

ment of the fibers in the matrix. In order to systemati- 
cally analyze the effect of the relative fiber arrange- 
ments, the fiber geometry was assumed to be ordered 
in rectangular and staggered arrays, shown schemati- 
cally in Fig. 2. Also identified in Fig. 2 are the repre- 
sentative unit cells associated with the two arrange- 

ments. Different fiber arrangements can be generated 
by varying the fiber packing angle, 1~. For s~~metric 
ordered arrangements (rectangular and staggered 
arrays) as seen in Fig. 2, it suffices to analyze only one 
unit cell width of the cross-section, since the behavior 
is identical in every unit cell width. Consequently, I?’ 
in equation (7) equals i?‘,,,? which is the unit cell width, 
H‘,, (Fig. 2), scaled with respect to the sample thick- 

ness, L. 
The effect of the sample thickness, L, was assessed 

by considering four different thicknesses, which were 
integral multiples of the unit cell height I,, (shown 
in Fig. 2). The range of L was selected based on 
preliminary studies with thicknesses up to 10 unit cell 
heights, which showed that the thickness was not an 
important parameter beyond 6 unit cell heights. Table 
1 lists all the parameters and their values used in 
our studies. The range of values are those usually 
encountered in most practical applications. A total of 
about 600 cases was studied. 

Numerical method 
The governing equation, equation (6), and the 

associated conditions, equations (7) and (9). were 
solved using an Alternating Direction Implicit (ADI) 
finite difference scheme 1171. The two-dinlensional 
domain 0 < X- < M’,, and 0 ,< p < 1, representing the 

transformed composite cross-section, was discretized 
using 41 grid points along the width (X), and 11 I grid 
points along the thickness (J). This mesh size was 

1 0 o-=0 0 ( 
hnnnnf- 

(a) Rectm@dac Amy 

@) Staggered Array 

FIG. 2. Schematic of ordered fiber arrangements. (a) Rec- 
tangular array. (b) Staggered array. 
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Table I. The parameters and their values used in the simulation 

Fiber 
L P 4 v (X) arrangement 1~ (degrees) 

1. x4, 
6, 10 

unit cell 
heights 

0.1, 1, 0.1, 1, 30 Rectangular 30, 45. 60 
10, 100 10, 100 Staggered 25, 35,45, 55,65 

50 Rectangular 35, 45, 55 
Staggered x,45, 65 

70 Rectangular 4.5 
Staggered 30,45,60 

found to be an optimal choice, since further refine- 

ments did not yield obvious improvements in the accu- 
racy of the results. 

The control volume approach for heterogeneous 
media, described in titankar [17], was adopted in the 
finite difference formulation. In this approach, the 
properties (thermal conductivity and volumetric spec- 
ific heat) of the computational cell surrounding a grid 
point are evaluated based on the fiber and matrix 
volume fractions within the computational cell. Note 
that the cell fiber volume fractions vary from one cell 
to another, and are different from the overall fiber 

volume fraction, D, in the composite. A cell fiber vol- 
ume fraction of unity implies a fiber-filled com- 
putational cell, while a cell fiber volume fraction of 0 
corresponds to a matrix-filled computational cell. If a 
computational cell contains a fiber-matrix interface, 
the cell fiber volume fraction lies between 0 and 1. The 
cell thermal conductivity is a nieigkted harmonic 
werage of the fiber and matrix conductivities, with 
the cell volume fractions as the weights, The cell volu- 
metric specific heat is a ~~e~9~t~d ~r~t~~~t~~ aoerage of 
the fiber and matrix volumetric specific heats, with the 

cell volume fractions as the weights. 
In our simulation, the depth of the initial heated 

region, A? in equation (9) was chosen to be the same 
as the mesh size in the thickness (j) direction. Since 
the dimensionless sample thickness was always unity 
(by virtue of the non-dimensionalization scheme 

employed), the value of AJ was l/l 10 (the mesh size 
corresponding to 11 I grid points) in all the cases. The 
average rear face temperature rise was obtained by 
arithmetically averaging the values of 0 at the 41 grid 
points on the rear face. The dimensionless time step, 
AT, ranged between 0.0001 and 0.001 depending upon 
the value of the fiber-matrix diffusivity ratio. A high 
value of the diffusivity ratio required a small time step 
and vice versa. All calculations were carried out on a 
DEC station 3 100. 

RESULTS AND DISCUSSION 

Homogeneity criterion 
Since the ‘effective’ diffusivity is used as the ref- 

erence in obtaining the homogeneity criterion, its 
accuracy as a measure of the exact transient behavior 
needs to be assessed. This was done by comparing the 
rear face temperature rise versus time profiles for a 
composite sample and an equivalent homogeneous 

medium, whose thickness is the same as that of the 
composite material, and the transient thermal diffu- 
sivity equals the ‘effective’ diffusivity of the composite 
sample. 

Figure 3 illustrates a typical result of the dimen- 

sionless rear face (1’ = 0) temperature rise history 
comparison. In the figure, the dimensionless rear face 
temperature rise, O,,,, is plotted along the vertical axis 
as a function of the dimensionless time, 7, along the 
horizontal axis. The solid curve in the figure is the 
numerical simulation result for a composite sample 
having an equilateral triangular fiber arrangement 
(staggered array with y = 60” in Fig. 2) with a fiber 

volume fraction of 50%, and a thickness of 2 unit 
cell heights. The values of the fiber-matrix thermal 
conductivity ratio, 8, and the volumetric specific heat 
ratio, q, are 100 and 10 respectively. The dashed line 
in Fig. 3 represents the dimensionless rear face tem- 
perature rise history for an equivalent homogeneous 
medium having the ‘effective’ diffusivity of the com- 
posite, and a thickness equal to that of the composite 
sample. The dashed curve is obtained using the ana- 
lytical solution of the transient heat conduction equa- 
tion in a homogeneous medium subject to an initial 
flash pulse [5]. 

It may be seen from Fig. 3 that the transient 

response of an equivalent homogeneous medium 
agrees very well with the actual transient response for 
the composite from the numerical simulation. This 

suggests that the ‘effective’ diffusivity is indeed an 
accurate characterization of the transient thermal 
behavior of a composite material. 

The homogeneity criterion can now be obtained 

based on comparison between the experimentally 
measured ‘effective’ diffusivity and the homogenized 
‘static’ diffusivity. For each of the various com- 
binations of the parameters given in Table 1, the nor- 
malized ‘effective’ thermal diffusivity, LxJc+,,, was 
determined using the following relation, which is 
equation (1) rewritten in dimensionless form : 

x, 1.38 

CI 
, 

“1 7r-r,:2’ (10) 

where t,:* is obtained from the numerical simulation 
results. 

The normalized ‘static’ diffusi~~ity, ~,/a,, was evalu- 
ated using the non-dimensional form of equation (2) 
given below : 
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/--- Rear face temp. rise for a composite specimen 
0.6 

1 / 
_____ Rear face teanp. rise for an equivalent hanogeneo~s medium 

FIG. 3. Rear face temperature rise profiles for: (I) a composite sample with L = 2/,,, /I = 100, q = IO, 
11 = 50% and equilateral triangular fiber arrangement (solid curve), and (2) a homogeneous material with 

L = 21,, and a transient thermal diffusivity equal to U, of the composite material (dashed curve). 

where kc/k, is the ‘effective’ thermal conductivity 
ratio and q is the fiber-matrix volumetric specific heat 
ratio defined in equation (8). The ‘effective’ thermal 
conductivity ratio was obtained by numerically solv- 
ing the steady state heat conduction equation in the 
composite. The details of the numerical solution of 
the steady state equation are not presented here. The 

interested reader is referred to the studies in the litera- 
ture such as the analysis of ordered fiber arrangements 

by Han and Cosner [2]. 
The accuracy of the homogeneous medium 

approximation for transient heat conduction was rep- 
resented in terms of the difference between the nor- 
malized ‘effective’ and ‘static’ diffusivities, ~,/a,, 

(equation (IO)) and X,/X,, (equation (11)) respectively, 
expressed as a percentage with respect to the nor- 
malized ‘static’ diffusivity. Parametric studies revealed 
that the most important parameter affecting this per- 
centage deviation from homogeneity is the sample 
thickness, L. As expected, the deviation from homo- 
geneity varies inversely with L, thereby rendering the 
homogeneity approximation more accurate with 
increasing thickness. 

Figure 4 shows frequency bar charts of the per- 
centage deviation from homogeneity, based on all the 
cases studied. Shown in Fig. 4 are four plot frames 
corresponding to sample thicknesses, L, of I,,, 21,,, 
41,, and I$,. Each of these frames is a bar plot of the 

percentage of the total number of cases studied (along 
the abscissa) which correspond to a certain percentage 
deviation from homogeneity (along the ordinate). The 

standard deviations, CJ, of each of these distributions 
are also shown in the figure. 

It may be seen from Fig. 4 that for the cases reported 
in Table I, if the sample thickness is greater than 4 
unit cell heights (41,,), the maximum deviation from 
homogeneity is about IO%, and in over 95% of the 
cases the deviation from homogeneity is less than 
7.08% (20 limits [18]). Therefore, a thickness of about 
41,,, may be regarded as ‘critical’, above which the 
deviation from homogeneity is relatively small. For 
thickncsscs below the critical value, non-negligible 
errors (> 10%) may be introduced if homogenization 
were employed. Also, for sample thicknesses grcatcr 
than about 2-3 unit cell heights, 2-31,,, the effect of 
all the other parameters was found to be relatively 
insignificant. 

It is interesting to note that the above result for 
unidirectional fiber-reinforced composites is in agree- 
ment with the qualitative conclusions of Taylor et al. 
[ 191 that the concept of cffcctive diffusivity applies to 
fine-weave, 3-D fiber-reinforced composites when the 
sample thickness cxceeds,fbur unit cell spacings. Their 
result was based on experimental studies on a fine- 
weave 3-D carbon/carbon composite with a nominal 
spacing of 0.3 in. between fiber bundles in all three 
directions. 

The critical sample thickness for homogeneity, 
namely 41,,, is valid even for disordered arrays since 



Transverse thermal diffusivity of fiber-reinforced composites 2191 

80 80 

50 50 

40 40 

30 30 

20 20 

10 10 

0 0 

-10 -10 

-20 -20 

-30 -30 

-40 -40 

-50 -50 

-80 -80 

%ofdatapaints % of data points % of data points % of data points 

Fro. 4. Frequency bar charts of the percentage deviation from homogeneity, based on all the cases studied, 
for four different sample thicknesses. 

the fiber arrangement is not a significant parameter 
beyond a thickness of 2--31,,. However, since the term 
‘unit cell height’ (I,,) is meaningless in the context of 
disordered arrays, a generalized expression for the 
critical sample thickness is necessary. 

For a given fiber volume fraction, a, the equilateral 
triangular arrangement (staggered array with a fiber 
packing angle, y, of 60” in Fig. 2) shown in Fig. 5 may 
be considered representative of a uniform random 
fiber arrangement. (In terms of energies, hypo- 
thetically, if the fibers are assumed to mutually repel 
one another, this also represents the minimum poten- 
tial energy configuration.) It could be argued that the 
square packing array (rectangular or staggered array 
with a fiber packing angle, 7, of 45” in Fig. 2) also 
approximates a uniform random fiber arrangement. 

However, the equilateral triangular distribution is 
chosen as representative since its unit cell height is 
larger than that of a square packing array, and conse- 
quently the resulting generalized critical thickness will 
be a conservative estimate. 

Homogeneity Criterion: L2 4(&J 

FIG 5. Equilateral triangular fiber arrangement and the 
generalized homogeneity criterion. 

The expressions for the unit cell height of an equi- 
lateral triangular arrangement, J,, and the cor- 
responding critical thickness, 41,,, are given in Fig. 
5. Therefore, the homogeneity criterion may be ex- 
pressed conservatively as 

where D is the fiber diameter. From Fig. 4, it follows 
that if equation (12) is satisfied, the error introduced 
due to homogenization will be less than about 7% in 
most of the cases. If a larger error could be tolerated, 
the factor 4 in equation (12) may be lowered based 
on the percentage deviations in Fig. 4. Conversely, if 
a smaller error is desired, the factor 4 in equation (12) 
must be increased to 6 or more. 

The above homogeneity criterion is valid only for 
transverse heat conduction in unidirectional fiber- 
reinforced composites. Furthermore, since the cri- 
terion is based on the parametric studies as described 
in Table 1, caution must be employed in the use of the 
criterion outside the range of parameters in Table 1. 

To illustrate the application of the homogeneity 
criterion, equation (12), to practical situations, we 
consider the example of typical commercial prepregs, 
and typical fiber tows used in the filament winding 
process, which have fibers of diameter (D) about 15 
30 pm, and a fiber volume fraction (v) of about 60%. 
For these cases, the homogeneity criterion, equation 
(12), requires that the thickness, L, be greater than or 
equal to about 130 ym and about 260 pm for D = 15 
pm and 30 pm respectively. Typical thicknesses in 
industrial applications range between 100 pm and 300 
pm. Therefore, considerable error would be intro- 
duced if thicknesses towards the lower end of the 
spectrum were analyzed using the homogenized ‘sta- 
tic’ diffusivity. For example, a 100~pm-thick sample 
having fibers of diameter (D) 23 pm and a fiber volume 
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fraction (a) of 60%, assuming an equilateral tri- 
angular arrangement of fibers, corresponds to a thick- 
ness (L) to unit cell height (I,,) ratio of about 2. It is 
evident from Fig. 4 that the deviation from homo- 

geneity in this case could be as much as about 20%. 

Estimation qf’homogenized d#iisiuity 

If the homogeneity criterion, equation (12), is sat- 
isfied, the transverse thermal diffusivity may be 
approximated by the ‘static’ diffusivity (equation 

(11)). The accuracy of the approximation, however, 
depends upon the method used to evaluate kc/k,, in 
equation (I I). Figure 6 presents a comparison 
between the normalized ‘static’ thermal diffusivity 
evaluated using the numerically determined effective 
thermal conductivity ratio, kc/k,,, and the normalized 
‘effective’ diffusivity from the flash experiment, for the 
critical sample thickness of 4 unit cell heights. The 
data points in the figure correspond to the various 
cases studied (Table 1). The solid line diagonal to the 
plot frame represents the lint of exact agreement, and 
the dashed lines are the 10% error bands. The error 
bands are not shown all the way down to the origin 
for the sake of clarity. As is evident from the figure, the 
agreement between the two diffusivities is extremely 
good in almost all the cases studied. 

Since a rigorous numerical evaluation of kc/k,, each 
time is impractical owing to the computational inten- 
sity, it is desirable to have an analytical expression for 
the normalized thermal diffusivity. With this objec- 

tive, the normalized ‘static’ diffusivity (equation (1 1)) 
was calculated using two of the existing analytical 
correlations for the effective thermal conductivity 
ratio. 

First, we utilize the simplified heat conduction 
model using the concept of thermal resistances in 
series, which is employed in some of the analyses of 
composite manufacturing processes [12]. ‘Resistances 
in series’ refers to the fact that the effective resistance 
to heat flow (which equals the inverse of the effective 
composite conductance) is an algebraic sum of the 
resistances (which equals the inverse of the con- 
ductances) due to the fibers and the matrix. The effec- 
tive thermal conductivity ratio, kc/k,, of this model 
may be written as 

(13) 

and the corresponding normalized ‘static’ diffusivity 
(from equation (12)) takes the following form : 

Several improved models for the effective thermal 

conductivity of fiber-reinforced composites exist in 

the literature. Almost all the analytical models in the 

(14) 
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FIG. 6. Comparison between the normalized ‘static’ diffusivity, (M,/c(,),,,, evaluated using the numerically 
determined effective conductivity ratios (k,/k,), and the normalized ‘effective’ diffusivity, (a,/cq,,),,,,, from 

the flash experiment simulation. 
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literature are applicable either to ordered arrange- 
ments alone, such as in ref. [I], or solely to disordered 

arrangements, such as the Milton lower bounds in ref. 

[20]. Recently, Pitchumani and Yao [3] proposed a 
generalized analytical correlation using local fractal 
techniques, which are applicable to ordered as well as 
disordered fiber arrangements. The expression for the 
normalized ‘static’ diffusivity resulting from the cor- 
relation in ref. [3] is not presented here for the sake 
of brevity. 

Figure 7 compares the normalized ‘effective’ ther- 
mal diffusivity (equation (10)) obtained from the flash 
experiment simulation (along the abscissa), for a sam- 
ple thickness of 4 unit cell heights, with the normalized 

‘static’ diffusivities evaluated using (a) the resistances 
in series model (equation (14)) and (b) the analytical 
correlation of Pitchumani and Yao [3]. The symbols 

represent the various cases studied (Table 1) ; the solid 
and dashed lines are as explained in connection with 
Fig. 6. 

It may be noted from Fig. 7 that the simulation 
results and the normalized ‘static’ diffusivity obtained 
using the resistances in series model (method (a) 
above) underpredicts considerably due to the sim- 
plified heat flow pattern assumed in the model. The 
correlation of Pitchumani and Yao [3] (method (b) 
above), on the other hand, predicts the diffusivities to 
within 10% of the experimentally measured values in 
nearly 95% of the cases considered. The expression 
using the correlation in ref. [3], therefore, provides 

quick and reasonably accurate estimates of the nor- 

malized thermal diffusivity in practical cases. 

CONCLUSIONS 

The limits of applicability of the homogeneous 

medium approximation and the use of the ‘static’ 
diffusivity for transient heat conduction in thin fiber- 
reinforced composites were investigated. A quan- 
titative criterion for homogenization, based on a con- 
servative critical sample thickness, was developed. 
This criterion, which is valid for transient transverse 
heat conduction through fibrous composites, is appli- 
cable to ordered as well as disordered fiber arrange- 
ments in the practical range of composite parameters 
(Table 1). The criterion, applied to commercial pre- 
pregs and fiber tows used in the filament winding 

process, indicates that in some cases the homo- 
genization approximation may introduce con- 

siderable errors in the analysis. 
An analytical means for the evaluation of the ‘static’ 

diffusivity (equation (14)) in practical situations (with 
ordered or random fiber arrangements) was proposed 
using the results of the steady state analysis in ref. [3]. 
This was shown to predict the thermal diffusivities to 
within 10% in almost all the cases tested. 
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EVALUATION DE LA DIFFUSIVITE THERMIQUE TRANSVERSALE DES 
COMPOSITES AVEC FIBRES UNIDIRECTIONNELLES 

R&urn&On examine i’applicabilit~ de l’approximation d’un milieu homogene i la conduction transversale 
variable dans des composites renforces unidirectionnellement par des fibres. L’etude s’attdche au probltme 
de la conduction variable dans des sections droites minces qui sont rencontrkes dans des applications 
industrielles. La mCthode flash pour mesurer la diffusiviti: apparente variable est num&iquement sinmICe 
pour un large domaine des paramitres des composites. BasCc sur des ttudes paramitriques, on propose 
une t?paisseur critique d’eprouvette au dessus dc laquelle le composite peut 2tre analyse de faGon simple 
comme un milieu homogene ayant une diffusivite thermique Cquivalente variable. Au dessous de l’kpaisseur 
critique, I’approximation du milieu homogkne peut introduire des erreurs non nigligeables. On prisente 
aussi un moyen analytique pour I’Cvaluation, dans des situations pratiques, dc la diffusivitk variable 

homog&&s0e. 

BESTIMMUNG DER TRANSVERSALEN TEMPERATURLEITF~HIGK~IT VON 
FIBERVERSTbiRKTEN KOMPOSITMATERlALiEN MIT GERICHTETEN FASERN 

Zusammenfassung-Untersucht wird, inwieweit die Annahme tines homogenen Mediums bei transversaler 
transienter WPrmeleitung in fiberverstarkten Kompositmaterialien mit gerichteten Fasern gerechtfertigt 
ist. Die Studie konzentriert sich auf transiente Wgrmeleitung in diinnen QuerschnittsflBchen, da dies in 
Anwendungsgebieten wie beispielsweise der kommerziellen Herstellung von ‘Prepreg’-Streifen von Be- 
deutung ist. Die Flash-Messung zur Bestimmung der scheinbaren Temperaturleitftihigkeit wurde iiber einen 
groDen Parameterbereich numerisch simuliert. Von der Parameterstudie ausgehend wird eine kritische 
Probendicke vorgeschlagen, oberhalb derer das Kompositmaterial vereinfacht als homogenes Material mit 
einer ~quivalenten Tem~raturleitf~higkeit betrachtet werden darf. Unterhalbder kritischen Dicke fiihrt die 
Annahme eines homogenen Mediums zu nicht vernachllssigbaren Fehlern. Zusatzlich wird ein analytisches 

Verfahren zur praktischen Bestimmung der homogenisierten Temperaturleitfihigkeit vorgeschlagen. 

OMEHKA nOnEPEsHOtlr TEMI-IEPATYPOIIPOBOAHOCTki KOMIIOJMTOB, 
APMHPOBAHHLIX OAHOHAnPABJIEHHbIM BOJIOKHOM 

hiHOTSWtW-&CJIeJqeTCS IlPHMeHHMOCfb npe6nEmerm% O~OpO~HOii Cpfibl K nORe~‘HiOii HeCTWBO- 

HapHOii Ten~O~pOBO~~U B KOMIi03NTaX, apMHpOBaHHbIX O~HOHa~paBneHH~lM BOJIOKHOM. ‘kHOBHOe 

BH~MaH~e ynenrercr npo6neMe H~Tau~oHapno~ ~~no~~Bo~~T~ B ~a_%b~x rtonepefHbIx ceqeteslrrx, 

Bc*~‘EilOUI&CK B TaKHX UpEi.lIOXCt%EiKX KaK npOH30BOLWTBO npOM~~eHH~X ZeIiT, 6pouece HaMOTKZi 
HHTYI EI T.J,. %C,eHHO MOLlenHpOBWICX 3KCIIepEfMeHT CO BCIU,IUrKOff ,iVIB E3Me&leH‘SK Xa2XyureiirCK TeMl-‘e- 

paT,‘pOnpOBOJW,CTH B IUHPOKOM EiEiTepBWle H3MeHeHKii IElpaMeTpOB KOMrI03ETOB. Ha OCHOBe napa- 

MeTpllWCKAX EiCUtenOBaHEiii O~~~eJleHa KptlTH’ieCKaK TOJIIWiHa o6pasua, BbIlIIe KOTOPOii ROMn038T 

MOWfO paCCMaTpL%BaTb KBK OJlEIOpOLWp Cpeny C 3+#KTluBHOfi TeMnepaTypOnpOEO~OCTb~. B CJIyvae 

TO,IL,JUHb, MeHbIUe KPHTH’ECKOii npn6namemie OAIiOpOAHOii C&WALd MOXZT BHOCHTb nOr&X%IIHOCTH, 

ROTOPblMH HeJIb npeHe6peqb. ~~LVT2UlJESi TSLKXE ZUEUlHTHWCKHii MeTOn OLleHKH TeMIEpaTypOnpO- 
BOBHOCTN rOMORHH3HPOBaHHbIX CPA B IIpaKTWIeCKHX CBT,‘aW%KX. 


